Как летает самолет

Содержание

Почему самолет держится в воздухе? Аэродинамика «на пальцах»

Шутки шутками, но определенный налет серьезности появляется в подобной ситуации не только у обремененного авиационными знаниями человека. Тем более, что вышеупомянутая сорокатонная «дура» — это, вобщем-то, средний по размерам самолет российских ВВС СУ-24. Ну, а если этот «посерьезневший» человек окажется свидетелем неторопливого, но о-о-очень уверенного взлета самого большого в мире транспортного самолета АН-225 «Мрия» («Мечта» по-украински, кто не знает)?.. Комментировать больше ничего не буду. Добавлю лишь, что взлетный вес этой «птички» — 600 тонн.

Да, впечатления на этой почве могут быть очень глубокими. Но, как бы то ни было, эмоции здесь совершенно ни при чем. Физика. Одна голая физика. Именно подчиняясь законам физики, поднимаются в воздух все летательные аппараты, начиная с легких спортивных самолетов и заканчивая тяжелыми транспортниками и, казалось бы, уж совсем бесформенными вертолетами, непонятно как удерживающимися в воздухе. И происходит все это за счет подъемной силы да еще силы тяги двигателя.

Словосочетание «подъемная сила» знакомо практически любому человеку, но удивительно то, что далеко не каждый может сказать, откуда же она все-таки берется, эта самая сила. А между тем объяснить ее происхождение можно просто, буквально «на пальцах», не влезая в математические дебри.

Как известно, главная несущая поверхность самолета — это крыло. Оно практически всегда имеет определенный профиль, у которого нижняя часть плоская, а верхняя выпуклая (по определенному закону). Воздушный поток, проходя под нижней частью профиля, почти не меняет своей структуры и формы. Зато, проходя над верхней частью, он сужается, ведь для него верхняя поверхность профиля — это как вогнутая стенка в трубе, по которой этот самый поток как бы протекает.

Теперь, чтобы через эту «продавленную» трубу прогнать за определенное время тот же обьем воздуха, его нужно двигать быстрее, что и происходит на самом деле. Осталось вспомнить закон Бернулли из любимого школьного курса физики, который гласит, что чем выше скорость потока, тем ниже его давление. Таким образом, давление над профилем (а значит и над всем крылом) ниже давления под ним.

Возникает сила, которая старается «выдавить» крыло, а значит и весь летательный аппарат вверх. Это и есть та самая вышеупомянутая подъемная сила. Как только она становится больше веса — ура! Мы в воздухе! Мы летим! И, кстати, чем выше наша скорость, тем больше подъемная сила. Если же в дальнейшем подъ

емная сила и вес сравняются по величине, то самолет перейдет в горизонтальный полет. А хорошую скорость нам придаст мощный авиационный двигатель или, точнее, сила тяги, которую он создает.

Используя этот принцип можно, теоретически, заставить взлететь (и успешно летать) предмет любой массы и формы. Главное — точно все рассчитать с точки зрения аэродинамики и других авиационных наук и правильно изготовить этот самый предмет. Упоминая о форме, я имею ввиду, главным образом, вертолет. Аппарат, совсем не похожий внешне на самолет, в воздухе держится по той же причине. Ведь каждая лопасть его главного, говоря авиационным языком, несущего (очень характерное слово, выше уже встречалось) винта — это то же крыло с аэродинамическим профилем.

Двигаясь в воздушном потоке при вращении винта, лопасть создает подъемную силу, которая, кстати, не только поднимает вертолет, но и двигает его вперед. Для этого ось вращения винта немного наклоняется (создается «перекос» винта), и появляется горизонтальная составляющая подъемной силы, исполняющая роль силы тяги самолетного двигателя. Винт как бы тянет одновременно вверх и вперед. В результате получаем уверенный и очень надежный полет такого, вобщем-то, «странного» аппарата, как вертолет. И, между прочим, достаточно красивый полет. Я неоднократно наблюдал с земли пилотаж боевого вертолета МИ-24 — зрелище просто завораживающее.

Кстати, хочу заметить, что винты самолетов с винтовыми двигателями (турбо или поршневыми) сродни вертолетным и используют тот же принцип (догадались какой?). Только подъемная сила здесь полностью «переквалифицировалась» в силу тяги. Говоря по-вертолетному, «перекос» винта — 90 градусов.

Да, авиация — это очень красиво. Слова восхищения применимы в разговоре о полете любого достаточно совершенного летательного аппарата. Будь то внешне неторопливый гигант «Мрия», трудяга-штурмовик СУ-25 или юркий спортивный пилотажник. Вся эта красота является результатом подчас многолетней кропотливой работы ученых и авиационных инженеров, аэродинамиков, двигателистов, прочнистов и т. д.

И авиационная наука на самом деле столь же сложна, сколь и интересна. Но в основе ее лежит, вобщем-то, простой физический принцип образования подъемной силы, суть которого, при желании, можно очень легко обьяснить, и который, тем не менее, помогает осуществить вековое стремление человечества к полету…

Теги: физика, сила, воздух, самолет, наука, полет, законы физики, подъемная сила

Похожие статьи


Артем Надеин

Ребёнок впервые увидел самолёт? Готовьтесь к каверзным вопросам! Зачем нужны крылья, почему он так шумит, и как вообще эта огромная штука летает? Вооружившись детской энциклопедией «Самолёты и авиация», мы составили «авиационную шпаргалку» для маленьких авиаторов и их родителей.

Подняться в небо людей вдохновили птицы: наблюдая за ними, ученые постигли многие тайны полёта. Даже само слово «авиация» (все придуманные человеком механизмы, способные летать) произошло от латинского «avis» — птица.

Почему птица летит и не падает? Секрет в особой форме крыльев с выпуклой верхней частью. Из-за неё воздух над крылом течёт быстрее, чем снизу, теряя давление — словно «разжижаясь». Разница давлений тянет птицу вверх — этот удивительный эффект называется подъёмной силой. Рассчитать её смог в 1904 году выдающийся русский учёный Николай Жуковский, заложив основы новой «воздушной» науки — аэродинамики.

Конечно, у людей нет крыльев, зато есть ум и наблюдательность. «Человечество полетит, опираясь не на силу мускулов, а на силу разума!» — говорил Жуковский. И не ошибся. Люди придумали самолёты, использовав идею птичьих крыльев, создающих подъёмную силу. Хвост для самолёта также «подглядели» у птиц — он придает устойчивость в полёте.

Подъёмную силу легко ощутить, запуская в безветренный день воздушного змея — самый простой и древний летательный аппарат. Чтобы змей летел, нужно хорошо разбежаться и тянуть его за собой. Набрав скорость, змей взлетает и плывёт в потоке воздуха, словно в реке: над землёй его удерживает подъёмная сила. Но стоит остановиться, и змей упадёт на землю: чтобы подъёмная сила действовала, нужна определённая скорость.

Если бы по земле бежал великан и тянул за веревочку самолёт, то он бы летел не хуже воздушного змея! Но, увы, великанов не существует, и самолёту нужно самому набирать скорость, чтобы лететь — с помощью двигателей.

Раньше в самолётах были поршневые двигатели — такие же, как у автомобилей, только громче. Они вращали большие «вентиляторы» — пропеллеры (прям как у Карлсона!), которые загребали воздух лопастями, словно варенье ложками, и разгоняли самолёт. Но с ними самолёты летали медленно — не быстрее современной гоночной машины.

Всё изменилось с изобретением реактивного двигателя. Здесь нет пропеллеров и лопастей: со свистом выбрасывая струю горячего газа назад, он тянет самолёт вперёд, создавая реактивную тягу. В ясный день высоко в небе можно увидеть след реактивной струи пролетевшего самолёта. Она вылетает с такой силой, что на земле может легко перевернуть грузовик! Неудивительно, что реактивные самолёты могут летать со скоростью более 2000 км/ч!

Реактивную тягу можно создать даже дома, из подручных средств. Не верите? Развяжите надутый воздушный шарик, и он на несколько секунд превратится в «реактивный двигатель». Воздушная струя резко вырвет шарик из рук и отправит его в увлекательный, пусть и недолгий полет по комнате.

Дом самолётов — это небо, но место стоянки и «отдыха» — аэропорты; там их обслуживают, намывают до блеска и готовят к новым полётам. Аэропорт похож на большой муравейник: каждую минуту самолёты приземляются и взлетают, а тысячи пассажиров спешат по своим делам: улетают, встречают друзей или получают багаж.

Таких «муравейников» в мире — 45 тысяч, вот как сильно люди любят летать!

Ощущение полёта захватывает: не умея летать от природы, на самолёте человек может взмыть вверх на тысячи километров, взглянув свысока на облака и горы. Всего 100 лет назад это было несбыточной мечтой, а сегодня — обычное дело. И это здорово!

Самолёты увлекают нас к новым высотам не только физически. Интерес к авиации — это стремление постичь неизведанное и быть выше всех. Отличная «пища» для пытливого ума ребёнка!

По материалам книги «Самолёты и авиация».

Иллюстрации из книги.

В авиации строго регламентировано все, что только можно регламентировать. Экипаж всегда действует по строгой инструкции, в которой указаны действия для абсолютно любой ситуации. Никакой самодеятельности! Это касается и общения экипажа с пассажирами. Конечно, некоторые пилоты вроде Алексея Кочемасова любят по дороге рассказать какую-нибудь историю в микрофон, но на подавляющем большинстве рейсов вы услышите только заученные фразы из своего рода “разговорника”. Официально он называется “Сборником текстов информаций для использования на борту воздушного судна”. Выглядит он как брошюра из нескольких страниц с фразами на русском и английском языках и обязательно имеется в кабине – конечно, только для служебного пользования. Или для читателей FrequentFlyers.ru. Перед вами сборник одной из российских авиакомпаний. Изучайте. Просим извинения за не самое высокое качество картинок: пришлось фотографировать при не самом хорошем освещении. Для справки: КВС – командир воздушного судна, СБЭ – старший бортпроводник экипажа.

Илья Шатилин

Зачем самолеты перед вылетом обливают жидкостью

Отправляясь в путешествие на самолете в прохладное время года, перед вылетом, из иллюминатора, можно наблюдать, как специальные машины распыляют на самолет какую-то жидкость. Что это за жидкость? Зачем ею поливают самолет?

Когда на улице холодно, мокрый снег или дождь, высокая влажность самолеты нуждаются в специальной обработке против обледенения. Осадки, попадая на обшивку воздушного судна при низкой температуре, превращаются в ледяную оболочку, что изменяет профиль аэродинамических поверхностей. Вследствие этого, нарушается обтекание воздухом, а значит ведет к значительной потере подъемной силы.
Кроме того, увеличивается вес лайнера, что может привести к выходу из строя механизмов машин (в том числе и двигателей), повлиять на безопасный взлет и набор высоты. Для того чтобы этого не случилось, перед вылетом самолет обрабатывают специальной противообледенительной жидкостью. Ни один самолет не имеет право взлететь, если на его критических поверхностях имеются снег или лед .

К критическим поверхностям относятся крылья, включая механизацию крыла, хвостовое оперение, фюзеляж, гондолы и воздухозаборники двигателей. Тормозную систему ни в коем случае не обрабатывают.

Обработка от обледенения проходит в два этапа:

  1. Удаляется обледенение специальными механическими приспособлениями, жатым воздухом или с помощью подогретых жидкостей.
  2. Обливка противообледенительной жидкостью непосредственно перед вылетом— подогретой смесью гликоля и воды.

В зависимости от погодных условий и концентрации противообледенительной жидкости, время защитного действия составляет от 5 до 40 минут. Еще интереснее 2 Поделиться

Самолет — это невероятная сила и красота, особенно в полете. Но как такую огромную машину можно поднять?

Современного человека сложно удивить летающим самолетом в небе. Но если вы хоть раз находились вблизи этой многотонной техники, то озадачивались вопросом – за счет чего взлетает самолет и как воздух его удерживает?

Из школьных учебников по физике всем известно, что главными инструментами полета выступают сила тяги двигателя и подъемная сила.

За счет чего взлетает самолет: что ему помогает?

  • Ключевой поверхностной конструкций самолета являются крылья с верхней выпуклой частью и плоской нижней. Благодаря их особенной форме движение самолета на большой скорости превращает воздушный поток в несущую силу. Нижняя часть профиля самолета оставляет воздушный поток неизменным. При контакте с верхней частью поток воздуха сужается.
  • Конструкция крыльев имеет самое важное значение для самолета. От их способности выдерживать большую нагрузку зависит безопасный перелет человека.
  • Согласно закону Бернулли из физики – большая скорость воздушного потока приводит к низкому давлению и наоборот. Если применить данное правило к самолету, то получаем что под крылом давление воздуха значительно выше, чем над его поверхностью. За счет чего и взлетает самолет.
  • Начало движения самолета начинается за счет авиационного двигателя. С помощью силы тяги развивается определенная скорость. В результате образуется подъемная сила, которая влияет на крыло, а следом и на весь самолет.

Описание

  • Как только сила начинает превосходить вес самолета, он начинает взлетать в воздух. При равнозначном значении данных параметров летательный аппарат выравнивается в горизонтальное положение.
  • Подняться самолету в воздух помогает закон физики. Чтобы крылья запарили в воздухе, необходимо создать разницу давлений. Для взлета пассажирского лайнера необходимо развить скорость свыше 180 км/час.
  • Для полноценного разбега большегрузного самолета требуется длинная взлетно-посадочная полоса. Авиалайнер должен набрать максимальную взлетную скорость. Как только достигается нужная быстрота, происходит отрыв от земли и поднимается в воздух самолет.

Чем легче летающее средство, тем меньшая скорость нужна для взлета, к примеру, для взлета пассажирского самолета Ту 154М необходимо развить скорость 210 км/ч, для тяжелого самолета Boeing 737 – 220 км/ч. От скорости взлета зависит безопасность и надежность полета.

  • Для отрыва самолета от земли важны такие показатели как форма и профиль крыла, угол атаки, плотность и скорость воздушного потока. Важное значение имеет высота полета, которая для разных самолетов составляет от 5 до 12 тысяч метров. На большой высоте сопротивление воздуха значительно снижается и самолет расходует меньше топлива, чем на высоте до 1000 м.
  • Соотношение между металлическим крылом и воздушным потоком называют углом атаки. Для отрыва самолета от земли необходим показатель 3-5°. Конструкция крыла представляет собой непропорциональный металлический профиль с выпуклой верхней частью и ровным листом снизу. Прямая нижняя поверхность обеспечивает полноценное движение воздушной массы.

Самолет выдавливает к полету

Если угол атаки превысит критическую отметку, самолет начнет падать.

За счет чего взлетает самолет: принцип перемещения самолета в воздухе

Вопрос как взлетает самолет зависит от возможностей и характеристик 4 основных частей:

  • Плоскость крыла
  • Предкрылки и закрылки
  • Спойлеры
  • Винтовой и реактивный двигатель

Крылья самолета помогают зафиксировать аппарат в горизонтальном положении. Для управления на высоте предусмотрены подвижные кромки.

  • При взлете самолета пилоты специальными рычагами устанавливают положение для максимальной тяги. С помощью подвижных кромок подъемная сила крыла возрастает. При посадке самолета пассажиры могут увидеть, как на задней части крыла опускаются закрылки. Происходит плавная потеря высоты.
  • Выпуклая форма крыла создает верхним потокам воздуха более длинный путь, чем под крылом. Так как за крылом количество воздуха должно быть одинаковым, удлинение верхнего маршрута приводит к ускорению движения. Как следствие – понижение давления воздуха над крылом. Неравномерное давление сверху и снизу крыла помогает удержать огромную конструкцию в воздухе.
  • Крылья авиалайнера самостоятельно не формируют подъемную силу. Движение самолета вперед осуществляется с помощью реактивных двигателей. Их работа обеспечивает выброс большого количества воздуха. Реактивная сила обеспечивает самолету движение вперед, и в процессе набора скорости возникает подъемная сила.
  • Пилот самолета управляет полетом с помощью штурвала. С помощью нажатия педалей и выравнивания штурвала в определенное положение происходит набор высоты или снижение.
  • Чтобы развернуть самолет, в хвостовой части предусмотрен вертикальный киль и горизонтальные стабилизаторы. Маленькие хвостовые крылья помогают удержать фиксированное положение.

В полете действие сил

  • При поднятии самолета вверх пилоты немного опускают хвост. При таком положении возрастает угол атаки крыла.
  • Штурвал тянется на себя, и самолет набирает высоту. Нажатие на левую педаль очень плавно наклоняет самолет влево, на правую – вправо.
  • Для дополнительного торможения на крыльях самолета предусмотрены спойлеры. Их управление осуществляется пилотами вручную.

За счет чего взлетает, поднимается в воздух самолет: способы взлета

Обеспечить конкретную скорость для взлета самолета можно несколькими способами:

  • Взлет летательного аппарата с тормозов – самый распространенный способ. Двигатели самолета раскочегаривают до требуемой скорости при удержании самолета на тормозах.
  • Как только достигается нужный показатель, летательный аппарат спускается с тормозов и приступает к ускоренному разбегу.

Распространено

  • Взлет самолета с промежуточным торможением на взлетной полосе – скорость набирается при разбеге по длинной полосе.
  • Взлет в период выруливания на полосу – на аэродроме с ограниченным количеством свободного пространства отрыв самолета производится сходу, что позволяет ускорить взлет и задействовать минимум взлетной полосы.
  • Взлет при помощи трамплинов и систем для торможения колес – применяется для взлета боевых самолетов с поверхности авианосцев. Для создания мощной тяги самолеты оснащаются ракетными двигателями.
  • Взлет по вертикали – применяется для боевой техники на ограниченном взлетном пространстве.

Вертикальный

Каждый самолет взлетает по четко прописанному инструктажу, в котором указаны скорость отрыва, допустимая масса при взлете, уровень шума и другие показатели.

Как взлетает самолет: безопасное движение

  • После того, как взлетает самолет, в процессе полета он преодолевает зону турбулентности, пролетает через облака, встречается с непредвиденными погодными условиями. В этот момент человека охватывает беспокойство.
  • Просматриваемое колебание консолей является нормальной нагрузкой для конструкции авиалайнера.
  • Удар молнии не способен вывести самолет из равновесия. Возможное отклонение – кратковременное отключение приборов. А вот в грозовых облаках сконцентрированы потоки воздуха большой мощности, способные нарушить равновесие.
  • Автоматизированное управление самолетом находится под постоянным контролем с земли. Благодаря этому самолеты соблюдают определенные маршруты и не пересекаются.

Управление для безопасного полета

  • Во время полета от пилота требуется максимальное внимание. Он обязан контролировать работу двигателей, следить за высотой и выбранным курсом, за собственным направлением и движением других самолетов.
  • Слаженная работа техники и хорошо обученный пилот — позволяют обеспечить пассажирам безопасный полет.

Физика в движении самолета

  • Участник:Полозкова Анастасия Петровна
  • Руководитель:Гусарова Ирина Викторовна

Цель исследования: проследить историю открытия физики, связанной с самолетом, как эти открытия повлияли на развитие общества. Исследовать некоторые физические явления, происходящие при полете самолета, установить между ними связь.

Введение

Обоснования выбора темы

Из множества предоставляемых вариантов тем, я выбрала именно изучение физических явлений, связанных с полетом самолета, потому что такой популярный и распространенный способ передвижения на сегодняшний день является интересным объектом изучения. Самолёт — воздушное судно, предназначенное для полётов в атмосфере с помощью силовой установки, создающей тягу, и неподвижного относительно других частей аппарата крыла, создающего подъёмную силу. Физика играет огромную роль в процессе работы самолета. Тысячи самолетов летают каждый день. Тысячи людей доверяют жизни самолетам. Как же физика связана с этим? Именно этот вопрос натолкнул меня на изучения данной темы.

Актуальность это работы обусловлена изучением историей открытия физических явления в полете самолета, совершенствования их использования, а также возможностью развития моих исследовательских способностей, расширения кругозора и базы математических и физических знаний, развития логического мышления, тренировки интеллекта.

Объектом исследования является школьный материал физики 7-9 класс.

Предметом исследования являются физические явления в полете самолета.

Гипотезой исследования стало предположение: изученные физические явления лежат в основе полета самолета.

Цель исследования: проследить историю открытия физики, связанной с самолетом, как эти открытия повлияли на развитие общества. Исследовать некоторые физические явления, происходящие при полете самолета, установить между ними связь.

Практическая значимость работы определяется возможностью подробного изучения, саморазвития, анализа открытий.

I глава. Научное описание и объяснение явлений

1. Подъемная сила

Упрощённый вариант появления подъёмной силы крыла, которое располагается параллельно потоку воздуха. Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. Чем выше скорость потока, тем ниже давление в нём. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила. А почему подъёмная сила появляется, когда профиль крыла имеет вогнуто-выпуклую или двояковыпуклую симметричную форму?

Профиль крыла самолёта располагается под углом к воздушному потоку. А поток воздуха, сталкиваясь с нижней поверхностью такого крыла, скашивается и приобретает движение вниз. Согласно закону сохранения импульса на крыло будет действовать сила, направленная в противоположном направлении, то есть, вверх.

На самом деле всё намного сложнее. Набегающий поток воздуха воздействует на крыло с силой, которая называется полной аэродинамической силой. А подъёмная сила – это одна из составляющих этой силы. Вторая составляющая – сила лобового сопротивления. Вектор полной аэродинамической силы – это сумма векторов подъёмной силы и силы лобового сопротивления. Вектор подъёмной силы направлен перпендикулярно вектору скорости набегающего воздушного потока. А вектор силы лобового сопротивления – параллельно.

Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигателей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально. Двигатели самолёта создают тягу – силу, направление которой совпадает с направлением движения самолёта и противоположно направлению лобового сопротивления. Тяга толкает самолёт сквозь воздушную среду. При горизонтальном полёте с постоянной скоростью тяга и лобовое сопротивление уравновешены. Если увеличить тягу, самолёт начнёт ускоряться. Но и лобовое сопротивление увеличится тоже. И вскоре они снова уравновесятся. И самолёт будет лететь с постоянной, но большей скоростью.

Если скорость уменьшается, то становится меньше и подъёмная сила, и самолёт начинает снижаться.

2. Сила тяжести

Сила тяжести остается всегда одинаковой, на земле ли самолет или в воздухе, и поэтому приятно знать, что эта постоянная сила всегда с нами. Полет возможен только тогда, когда есть поступательная скорость. Поступательная скорость получается за счет энергии от сгорания горючего.

Если мы отрываемся от земли и поднимаемся на некоторую высоту, мы уже имеем некоторый запас энергии (вес самолета), способный придать самолету поступательную скорость, когда мотор перестанет ее развивать. В случае остановки мотора на некоторой высоте над землей вес продолжает тянуть самолет вперед; самолет не падает, а начинает планировать, скользя вниз, будучи все время управляем.

Чем выше самолет находится в воздухе, тем большее расстояние он может пролететь без мотора. Постоянно действующая сила тяжести становится чем- то вроде постоянной охраны обеспечивая самолет невидимой энергией, необходимой для движения вперед.

3. Электризация

На задней кромке крыла хорошо видны 10 электростатических разрядников.

Статическое электричество для летательных аппаратов представляет серьёзную проблему, но успешно решаемую.

Из-за трения о воздух на самолете в полёте набирается заряд 200 – 300 мкКл, поднимающий потенциал до 200 – 300 киловольт.

Когда шасси самолета приближаются к посадочной полосе, происходит электрический разряд на землю длиной около метра, чаще всего по поверхности резины колес. Его хорошо видно в темноте.

Накапливающееся в полёте статическое электричество значительно ухудшает работу радиосвязного оборудования, приводит к сбоям в работе цифровой аппаратуры. После посадки летательного аппарата статический заряд вполне способен убить человека.

Для предотвращения негативного влияния статического электричества на летательных аппаратах установлены следующие средства защиты:

  • Перемычки металлизации, соединяющие отдельные элементы конструкции самолета между собой и массой самолета.
  • Разрядники, способствующие стеканию накопленного самолетом заряда статического электричества в атмосферу.

На самолётах электростатические разрядники установлены группами на конце крыла, а также других выступающих частях конструкции планера.

Тело разрядника длиной 10–15 см представляет объемный резистор сопротивлением в 10–100 МОм.

II глава. История открытия, интересные факты о рассматриваемых явлениях

Подъемная, она же Архимедова, сила. Легенда гласит, что царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало — нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено. А в развитии аэродинамики у нас в стране выдающуюся роль сыграл профессор Николай Егорович Жуковский (1847—1921) —»отец русской авиации». Заслуга Жуковского состоит в том, что он первый объяснил образование подъемной силы крыла и сформулировал теорему для вычисления этой силы. Теорема Жуковского: Подъёмная сила сегмента крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъёмной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции. До Жуковского возникновение подъёмной силы объяснялось ударной теорией Ньютона, описывающей ударяющиеся об обтекаемое тело не связанные друг с другом частицы воздуха. Данная теория даёт заниженное значение подъёмной силы крыла. Жуковский впервые представил открытый им осенью 1904 года механизм образования подъёмной силы крыла на заседании Математического общества 15 ноября 1905 года.

Исаак Ньютон гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Ньютон в это самое время работал над законами движения , он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах. Ньютон же сделал следующее – он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

3. Электризация

Электризация – это явления, в которых тела приобретают свойства притягивать другие тела; вэлектризациивсегдаучаствуютдватела. Приэтом электризуются оба тела. Электризация происходит при соприкосновении. Греческий философ Фалес Милетский, живший в 624-547 гг. до нашей эры, открыл, что янтарь, потертый о мех, приобретает свойство притягивать мелкие предметы — пушинки, соломинки и т.п. Это свойство в течение ряда столетий приписывалось только янтарю, от названия которого и произошло слово «электричество». Рождение учения об электричестве связано с именем Уильяма Гильберта (1540-1603). Он был одним из первых ученых, утвердивших опыт, эксперимент как основу исследования. Он пока­зал, что при трении электризуется не только янтарь, но и многие другие вещества и что притягивают они не только пылинки, но и металлы, дерево, листья, камешки и даже воду и масло.

Вывод

Изучая физические явления, у меня возникло желание более подробно изучить их применение. Удивительным фактом и маленьким открытием становится то, что окружающие явления подчиняются и объясняются общими законами и закономерностями в физике.

Продолжаем срывать покровы с тайн гражданской авиации. Сегодня развеем страхи авиапассажиров от взлета современного лайнера.
Написать сейчас опус меня сподвиг один из читателей, который прислал ссылки на пару взлетов из аэропорта Курумоч (Самара), снятого любопытными пассажирами из салона самолета.
В данных видео привлекли комментарии. Что ж, вот они:
Видео 1
Комментарии к нему:
Видео 2
И комментарии
Оба случая объединяет один признак — пилоты «сходу пошли на взлет!»
Кошмар ведь, не правда ли?!!
Давайте разберемся!
—==(о)==—
Пассажиры со стажем наверняка помнят ритуал, повторяющийся практически в каждом взлете советского лайнера — самолет останавливается в начале полосы, затем некоторое время стоит — пилоты дают пассажирам помолиться.. да чего скрывать — они и сами в это время «молились» — так в шутку называют чтение карты контрольных проверок. После чего двигатели резко начинают сильно реветь, самолет — дрожать, пассажиры креститься… пилот отпускает тормоза и неведомая сила начинает вжимать притихших пассажиров в их кресла. Все трясется, полки открываются, у проводников что-то падает…
И вдруг, разумеется совершенно случайно, самолет взлетает. Становится немного тише, можно перевести дух… Но вдруг самолет начинает падать вниз!
В последний момент пилоты как правило «выравнивают лайнер», после этого еще пару раз «выключаются турбины» в наборе высоты, ну а потом все становится обычно. Стюардессы с каменными лицами разносят соки-воды, для тех, кто плохо молился — кислородную маску. А затем начинается главное, ради чего и летают пассажиры — разносят еду.
Ничего не упустил? Вроде такие отзывы о полетах я читал неоднократно на непрофильных форумах.
Давайте разберемся.
Прямо сразу расставим точки над ё по поводу остановки лайнера на полосе перед взлетом. Как все же должны делать пилоты — останавливаться или нет?
Ответ таков — и так и эдак правильно. Современная методика взлета рекомендует НЕ останавливаеться на полосе, если на то нет веских причин. Под такими причинами могут скрываться:
а) Диспетчер пока еще думает — выпускать Вас или подержать еще маленько
б) Полоса имеет ограниченную длину.
По пункту А, думаю, все понятно.
По пункту Б скажу следующее — если ВПП (полоса) действительно очень короткая, а самолет загружен так, чтобы только-только масса проходила для этой длины — в этом случае имеет смысл сэкономить несколько десятков метров и вывести двигатель на повышенный режим, удерживая самолет на тормозах. Или же ВПП просто ну очень непривычно короткая, пусть даже самолет легкий. В этом случае пилот тоже «на всякий случай» так сделает.
Например, мы используем такой взлет в Шамбери. Там ВПП всего два километра, а впереди горы. Хочется как можно быстрее оторваться от земли и умчатся повыше. И обычно масса там приближена к максимально возможно для условий взлета.
В подавляющем большинстве случаев, если диспетчер нам разрешил взлет одновременно с занятием полосы — мы не будем останавливаться. Мы вырулим на осевую линию (причем, возможно, что уже с ускорением), убедимся в устойчивом прямолинейном движении самолета, и после этого «дадим по газам».
Стоп!
А как же «помолиться»? Ведь выше ж написано про некую «карту контрольных проверок!»
На В737 ее принято зачитывать до получения разрешения на занятие полосы. И уж точно до получения разрешения на взлет. Поэтому, когда я получаю разрешение на взлет одновременно с разрешением занять полосу, я уже готов ко взлету, и я совсем не тороплюсь, как это может показаться пассажиру в салоне. У меня уже все готово.
—==(о)==—
Так зачем же все-таки так делать? Почему бы не постоять?
Очевидные плюсы — увеличение пропускной способности аэропорта. Чем меньше времени каждый отдельно взятый самолет занимает полосу, тем больше взлетно-посадочных операций с нее можно произвести.
Второе — экономия топлива.
Третье — безопасность. Как ни странно это звучит, но это уменьшает риск попадания посторонних объектов (в двигатель) и помпажа (читай, «отказа») двигателя при взлете с сильным попутным ветром.
Вот что пишет мистер Боинг по этому поводу:
Да-да, документы иномарок написаны на английском. Хотите стать пилотом? Учите английский!
И заодно и китайский. Сосед развивается уж больно стремительно.
—==(о)==—
Летим дальше.
Почему пилоты так резко задирают нос после взлета? Вот на советской технике это делали плавно, не спеша… Ведь не ровен час, уронят нафиг!
Тут голая аэродинамика и методика выполнения взлета. Иномарки как правило взлетают с очень небольшим углом отклонения механизации крыла (те забавные штуки, которые особенно сильно вылезают из крыла на посадке, и немного на взлете). Это дает много преимуществ:
а) Увеличивается угол набора
б) следствие из пункта А: уменьшается шум на местности,
в) и далее — увеличиваются шансы не влететь в препятствия в случае отказа двигателя
Да, современные лайнеры имеют такие мощные двигатели, что все нормируемые значения градиентов набора достигаются и при пониженной тяге (ее все равно будет достаточно при потере двигателя), но в некоторых ситуациях мистер Боинг настоятельно рекомендует взлетать на максимально возможно тяге. Если самолет легкий — получается просто классный аттракцион «Ракета».
Да, это создает некий дискомфорт для пассажиров (кому нравится лететь с задраными ногами) — но это абсолютно безопасно и будет длиться не очень долго.
«Почти упали после взлета»
Выше я написал, что самолет после взлета вдруг «начинает падать вниз!» Вот это особо хорошо чувствовалось на Ту-154, который натужно взлетал с довольно большим углом положения закрылков, и далее постепенно убирал их в нулевое положение. При уборке закрылков самолет теряет часть прироста подъемной силы (если убрать чересчур быстро, то можно и высоту потерять на самом деле — это правда, но для этого надо быть совсем уж неумелым пилотом, причем оба пилота должны быть неумехами), поэтому в салоне кажется, что самолет начал падать.
На самом деле он может в это время продолжать набор высоты. Просто угол становится более пологим и в этот переходный момент времени человеку кажется, что он летит вниз. Так уже устроен человек.
«Пару раз выключались турбины»
О, это наиболее частое происшествие в рассказах пассажиров! Конкурировать с этим могут только «пилот лишь с пятой попытки попали на аэродром». Наиболее характерно это было для Ту-154 и Ту-134, то есть, на самолетах с двигателями, расположенными далеко в хвосте — их в салоне почти не слышно, если они только не работают на повышенном режиме.
В шуме как раз-таки и загвоздка. Все примитивно до безобразия. В наборе высоты двигатели работают на очень высоком режиме. Чем выше режим работы двигателей — тем громче его слышно. Но иногда нам, пилотам, приходится выполнять команды диспетчера и прекращать набор высоты — например для того, чтобы разминуться (на безопасном удалении, конечно же) с другим самолетом. Мы плавно переводим самолет в горизонтальный полет, а чтобы не превратиться в сверхзвуковой лайнер (ведь двигатели, работающие на режиме набора создают очень большую тягу), приходится прибирать режим. В салоне становится значительно тише.

Вроде бы все.
Спасибо за внимание!

Взлёт

У этого термина существуют и другие значения, см. Взлёт (фильм).

Взлёт — процесс перехода летательного аппарата или летающего представителя фауны (насекомого, птицы, рукокрылого) в состояние полёта. Взлёт возможен только в том случае, если подъёмная сила больше веса взлетающего объекта.

Взлёт летательных аппаратов

Взлёт аэродинамических летательных аппаратов

Взлёт самолёта

Airbus A320-200 взлетает в аэропорту Лутон, Англия

По сравнению с другими типами летательных аппаратов самолёт имеет самую продолжительную по времени и самую сложную по организации управления фазу взлёта. Взлёт начинается с момента начала движения по взлётно-посадочной полосе (ВПП) для разбега и заканчивается на высоте перехода.

Взлёт самолёта бывает нескольких видов:

  • Взлёт с тормозов. Двигатели выводятся на режим максимальной тяги, на которой самолёт удерживается на тормозах; после того, как двигатели вышли на установленный режим, тормоза отпускаются, и начинается разбег.
  • Взлёт с кратковременной остановкой на ВПП. Экипаж не дожидается, пока двигатели выйдут на требуемый режим, а сразу начинает разбег (двигатели должны достичь нужной мощности до определённой скорости). При этом длина разбега увеличивается.
  • Взлёт без остановки (англ. rolling start), «с ходу». Двигатели выходят на нужный режим в процессе выруливания с рулёжной дорожки на ВПП, применяется при высокой интенсивности полётов на аэродроме ради экономии времени.
  • Взлёт с применением специальных средств. Чаще всего это взлёт с палубы авианесущего корабля в условиях ограниченной длины ВПП. В таких случаях короткий разбег компенсируется трамплинами, катапультными устройствами, дополнительными твердотопливными ракетными двигателями, автоматическими удерживателями колёс шасси и т. п.
  • Взлёт самолёта с вертикальным или укороченным взлётом (напр., Як-38).
  • Взлёт с поверхности воды.

Взлёт считается одним из самых сложных и опасных этапов полёта: во время взлёта могут отказать двигатели, работающие в условиях максимальной тепловой и механической нагруженности, самолёт (относительно других фаз полёта) максимально заправлен топливом, а высота полёта ещё мала. Самая большая катастрофа в истории авиации произошла именно на взлёте.

Конкретные правила взлёта для каждого типа воздушного судна описаны в руководстве по лётной эксплуатации самолёта. Коррективы могут вносить схемы выхода, особые условия (например, правила снижения шума), однако существуют некоторые общие правила.

Для разгона двигатели обычно устанавливают на взлётный режим. Это чрезвычайный режим, продолжительность полёта на нём ограничена несколькими минутами. Иногда (если позволяет длина полосы) при взлёте допустим номинальный режим. Чаще всего при взлёте двигатели устанавливают на номинальный режим именно с целью снижения уровня шума, если аэропорт расположен в непосредственной близости от населённого пункта и маршрут полёта пролегает над жилыми кварталами.

Каждое воздушное судно перед полётом обязано пройти предполётную подготовку. Самолёт готовят к тем условиям, в которых предстоит взлетать. Например, если прогнозируется обледенение, самолёт обрабатывают противообледенительной жидкостью.

Перед каждым взлётом штурман (если имеется) или второй пилот рассчитывает скорость принятия решения (V1), до которой взлёт может быть безопасно прекращён, и самолёт остановится в пределах взлётно-посадочной полосы (ВПП). Расчёт V1 учитывает множество факторов, таких, как: длина ВПП, её состояние, покрытие, уклон, высота аэродрома над уровнем моря, метеоусловия (ветер, температура), загрузка самолёта, центровка, и другие. Если отказ произошёл на скорости, меньшей V1, в случае экстренного торможения самолёт успеет остановиться в пределах ВПП и не выкатится. В случае, если отказ произошёл на скорости, большей V1, единственно верным решением будет продолжить взлёт и затем произвести посадку. Большинство типов самолётов гражданской авиации с несколькими двигателями сконструированы так, что, даже если на взлёте откажет один из двигателей, мощности остальных хватит на то, чтобы, разогнав машину до безопасной скорости, подняться на минимальную высоту, с которой можно зайти на глиссаду и посадить самолёт.

Перед взлётом пилот выпускает закрылки и предкрылки в расчётное положение, чтобы увеличить подъёмную силу, и в то же время минимально препятствовать разгону самолёта. Это уменьшает длину разбега и позволяет оторваться от полосы на меньшей скорости. Затем, дождавшись разрешения авиадиспетчера, пилот устанавливает двигателям взлётный режим и отпускает тормоза колёс, и самолёт начинает разбег. Во время разбега главная задача пилота — держать машину строго вдоль оси ВПП, не допуская поперечного смещения самолёта. Особенно это важно при боковом ветре. До определённой скорости аэродинамический руль направления неэффективен и руление происходит путём притормаживания одной из основных стоек шасси. После достижения скорости, на которой руль направления становится эффективен, управление производится рулём направления. Передняя стойка шасси на разбеге как правило заблокирована для поворота, или переведена в режим малых углов (повороты воздушного судна с её помощью осуществляются при рулении на малой скорости на аэродроме). Как только взлётная скорость достигнута, пилот плавно отклоняет штурвал на себя, увеличивая угол атаки. Нос самолёта приподнимается («подъём»), а затем и весь самолёт отрывается от земли.

Сразу же после отрыва для уменьшения лобового сопротивления (на высоте не ниже 5 метров) убираются шасси (если убираемые), и (при наличии) выпускные фары, затем производится постепенная уборка механизации крыла. Постепенная уборка обусловлена необходимостью медленного уменьшения подъёмной силы крыла. При быстром убирании механизации самолёт может дать опасную просадку. Зимой, когда самолёт влетает в относительно тёплые слои воздуха, где эффективность двигателей падает, просадка может быть особенно глубокой. Примерно по такому сценарию произошла катастрофа самолёта «Руслан» в Иркутске. Порядок уборки шасси и механизации крыла строго регламентирован в РЛЭ для каждого типа самолёта.

Как только достигнута высота перехода, пилот устанавливает стандартное давление 760 мм рт. ст. Аэропорты расположены на разных высотах, а управление воздушным транспортом осуществляется в единой системе, поэтому на высоте перехода пилот обязан перейти с системы отсчёта высот от уровня ВПП (или уровня моря) на эшелон (условную высоту). Также на высоте перехода двигателям устанавливают номинальный режим. После этого этап взлёта считается завершённым, и начинается следующий этап полёта: набор высоты.

Взлёт с ракетными ускорителями

Взлёт с ракетными ускорителями применяется в основном в военной авиации, хоть и в различных областях её применения. Например, если ВПП аэродрома уничтожена противником, то может встать задача обеспечения взлета с коротких участков сохранившегося полотна; также, по мнению создателей — безаэродромный старт позволил бы в большой степени обеспечить вывод самолётов-носителей ядерного оружия из-под удара противника (так как аэродромы — это один из первых объектов такого удара). Также обеспечение взлета тяжелонагруженного транспортного самолета с достаточно короткой полосы, а также с грунта различной прочности. Сюда же можно отнести взлет с полосы расположенной в высокогорье или в области с высокой температурой окружающего воздуха (или и то и другое вместе), то есть в условиях, когда тяга двигателя и аэродинамические характеристики не достигают своих максимальных значений. К специфическим задачам можно отнести задачи, решаемые истребительной авиацией ПВО. Здесь, например, может возникнуть необходимость защиты различных наземных объектов в местах отсутствия стационарных аэродромов, на которых могли бы базироваться истребители ПВО.

Взлёт вертолёта и СВВП

Фаза взлета для вертолёта относительна коротка и начинается с перевода двигателей на взлётный режим и заканчивается переходом в режим горизонтального полёта. Взлёт вертолёта может осуществляться вертикально или, если вертолёт оборудован колёсами и взлетает с ВПП, с коротким разбегом, для экономии топлива. На высокогорных взлётных площадках, где воздух разрежен, применяется взлёт с разбегом.

Взлёт аэростатических летательных аппаратов

  • Взлёт газонаполненного аэростата — обычно такие аэростаты заполняют лёгким газом задолго до взлёта и удерживают на земле за счёт балласта и швартовки. Для взлёта необходимо отшвартовать аппарат и сбросить часть балласта.
  • Взлёт монгольфьера — монгольфьер создаёт подъёмную силу только при наполнении горячим воздухом. Поэтому монгольфьеры обычно не швартуют. Для взлёта монгольфьера в его оболочку подают горячий воздух (обычной от газовой горелки), после чего аппарат плавно взлетает.

Взлёт ракетодинамических летательных аппаратов

Взлётом (или стартом) ракеты называется фаза от включения двигателя до выхода двигателя на режим расчётной тяги или покидания ракетой стартового сооружения (в зависимости от того, что наступит позже). Для твердотопливных ракет взлёт длится доли секунды. Практически все современные боевые ракеты (как твердотопливные, так и жидкостные) не расходую энергию собственного двигателя для взлета, а используют минометный старт.

Взлёт крылатой ракеты

Крылатые ракеты, как правило, взлетают с направляющих с использованием твердотопливных ускорителей, которые позволяют достичь полетной скорости на сравнительно небольшом расстоянии. Современные типы крылатых ракет используют установки вертикального пуска.

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 августа 2016 года.

Взлёт представителей фауны

Взлёт насекомых

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 августа 2016 года.

Взлёт золотистой бронзовки (Cetonia aurata)

Взлёт рукокрылых

Вопреки распространённому мнению, рукокрылые могут взлетать не только с высоко расположенных пунктов (потолка пещеры, ствола дерева), но и с ровной земли и даже с водной поверхности. В этом случае взлёт начинается с прыжка вверх, происходящего в результате сильного порывистого движения передних конечностей.

Взлёт птиц

Стратегия взлёта может существенным образом отличаться, прежде всего в зависимости от размера птицы. Птицы небольшого размера требуют относительно небольшой или даже нулевой начальной скорости, которая генерируется за счёт прыжка.

В частности, такое поведение было продемонстрировано на примере скворца и перепела, которые способны генерировать 80—90 % скорости полёта за счёт начального прыжка, достигая ускорения до 48 м/c².

При этом скворцы часто используют энергию ветви, на которой сидят, хотя и не способны регулировать силу прыжка в зависимости от её толщины.

Другие небольшие птицы, такие как колибри, чьи ноги слишком малы и тонки для прыжка, начинают махать крыльями ещё на земле, достигая подъёмной силы до 1,6 веса птицы.

Крупные птицы не способны взлетать с места, и им требуется начальная скорость для полёта. Чаще всего эта скорость достигается за счёт взлёта против ветра. В дополнение, часто птицы вынуждены делать пробежку по поверхности земли (например, журавль) или воды (лебедь, альбатросы).

Некоторые большие птицы, такие как орлы, используют скалы, верхние ветви деревьев или другие возвышения для получения скорости за счёт падения, морские птицы часто способны достичь подобного эффекта за счёт взлёта с гребня волны.

Галерея

  • Взлёт Boeing KC-135. Двигатели, работающие на взлётном режиме, выбрасывают много сажи

  • Взлёт летающей лодки.

  • Взлёт монгольфьера.

  • Вертикальный взлёт AV-8B Harrier.

  • Взлёт вертолёта Oryx.

  • Взлёт крылатой ракеты SM-62 Snark.

  • Взлёт (старт) ракеты-носителя «Союз».

  • Минометный старт ракеты «Днепр». Виден отделившийся поддон

  • Взлетающий лебедь-шипун. Хорошо виден след от разгона по поверхности воды

> См. также

  • Прерванный взлёт
  • Посадка (авиация)

> Литература

  • В. В. Ершов — «Раздумья ездового пса»

Примечания

  1. Режим полной нефорсированной тяги двигателей
  2. Безопасная скорость — минимальная скорость, на которой эффективности рулей хватает для управления воздушным судном в случае отказа одного из двигателей.
  3. В случае самолёта с носовой стойкой шасси.
  4. О ракетных ускорителях в авиации // АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ, 30 сентября 2014
  5. Earls K. D. Kinematics and mechanics of ground take-off in the starling Sturnis vulgaris and the quail Coturnix coturnix (англ.) // J Exp Biol. : journal. — 2000. — Vol. 203, no. 4. — P. 725—739. — PMID 10648214.
  6. Bonser R.H.C., Norman A.P., Rayner J.M.V. Does substrate quality influence take-off decisions in common starlings? (англ.) // Functional ecology : journal. — 1999. — Vol. 13. — P. 435—439. (недоступная ссылка)
  7. Tobalske B.W., Altshuler D.L., Powers D.L. Take-off mechanisms in hummingbirds (неопр.). — 2004. — С. 1345—1352.
  8. Taking Off Bird Flight. Paul and Bernice Noll’s Bird Choices. Архивировано 31 января 2012 года.

Словари и энциклопедии

>ТОП-10 опасных взлётов и посадок самолётов

Смотрите видео, когда до авиакатастрофы оставались буквально секунды, представьте реакцию пассажиров и экипажа.

Что же опаснее для самолёта взлёт или посадка?

Опасно и то и другое. Но если отвечать конкретно на вопрос, то посадка. Чтобы это объяснить, нужно рассмотреть чем опасны оба этапа.

Опасности при взлёте

  • При взлёте двигатели работают на взлётном режиме. Существует опасность их отказа в момент разбега самолета из за которого он не сможет ни оторваться от земли, ни остановиться на полосе. Поэтому при разбеге существует точка при прохождении которой пилот принимает решение — взлетать, или тормозить. Если отказ произошел после прохождения точки «рубеж» взлёт осуществляется при любых условиях. Даже на одном двигателе.
  • Вторая опасность — неправильная центровка. Перед взлетом пилот выставляет так называемую «взлетную конфигурацию» самолета. Выпускает на определенный угол закрылки и перекладывает стабилизатор. Рассчитывается как именно центрован самолет. Верен ли его расчет пилот может определить только после отрыва от земли.
  • Боковой ветер. Может мешать разбегу и сносить самолет с полосы.

Это наиболее распространенные опасности при взлёте.

Опасности при посадке

  • Ветер. Как боковой, так и курсовой. При сильном боковом ветре управление по удержанию курса затруднено.
  • Сдвиг ветра. Самолет держится в воздухе из-за обтекания его аэродинамических элементов воздушным потоком. Если при посадке сильный встречный ветер, то скорость складывается из скорости ветра и скорости самолета. Если ветер меняет направление или резко прекращается, самолет стремительно теряет высоту. При посадке запаса по высоте может уже и не быть.
  • Видимость. Если взлететь теоретически можно и в туман, то при посадке визуальные ориентиры играют куда большую роль. У пилотов существует разделение по классности, согласно которому они сдают экзамен на посадку в условиях ограниченной видимости. Данные категории называют «погодный минимум». Его нужно периодически подтверждать на практике.
  • Выдерживание параметров по приборам. Так называемый инструментальный заход. Пилот должен уметь, как это называется на сленге, «собирать стрелки в кучу». Т.е. иметь правильное представление о пространственном положении самолета полагаясь только на показания приборов и уметь правильно вести самолет без внешних ориентиров.
  • Центровка на посадке. По прибытию в пункт назначения, топливо уже выработано, и самолет стал легче. Однако, груз и пассажиры на месте (в большинстве случаев). Таким образом центровка самолета изменилась с момента взлета. Важно правильно её оценить, чтобы был запас по органам управления. В этой связи, иногда пилоты просят пассажиров перейти из салона в салон, или пересесть слева направо(или наоборот), особенно если рейс загружен не полностью.
  • Коэффициент сцепления. После касания может возникнуть опасность заноса самолета или же возникнуть проблемы с торможением из-за состояния полосы. Она может быть более скользкая, чем пилот предполагает. Важно уметь мгновенно ориентироваться в ситуации.
  • Важно приземляться точно на знаки, обозначенные на полосе, чтобы не было недолета или перелета. При точном следовании по КГС это условие выполняется. В аэропортах необорудованных глиссадной системой с этим есть дополнительные сложности.

Таким образом посадка сложнее. Когда известного советского пилота В. Ершова спросили какая самая сложная фигура пилотажа он тут же ответил — посадка.

Особенно сложная посадка на воду. Крушения самолётов при такой посадке наиболее часты.

Посадка (авиация)

У этого термина существуют и другие значения, см. Посадка. Посадка Боинга-747 компании Air France. Ярко выражена посадочная конфигурация: шасси, закрылки, предкрылки выпущены.

Посадка — завершающий этап полёта воздушного судна (летательного аппарата (ЛА)) при котором происходит замедление движения воздушного судна с высоты 25 метров над уровнем порога взлётно-посадочной полосы (ВПП) до полной остановки воздушного судна на ВПП аэродрома или другого места.

Грубая посадка воздушного судна (с повышенной перегрузкой) может привести к его разрушению и катастрофе (гибели экипажа и пассажиров). В средствах массовой коммуникации (СМК) и непрофессиональной литературе для обозначения грубой посадки некорректно используется разговорное словосочетание «жёсткая посадка».

Посадка самолёта

Этап посадки самолёта начинается с высоты 25 метров над уровнем порога ВПП (в случае стандартной курсо-глиссадной системы) и завершается пробегом по ВПП до полной остановки летательного аппарата. Для лёгких самолётов этап посадки может начинаться с высоты 9 метров. Посадка — самый сложный этап полёта, так как при уменьшении высоты уменьшается возможность исправления ошибок лётчика или автоматических систем.

Непосредственно посадке предшествует заход на посадку — часть полёта, которая включает предпосадочное маневрирование в районе аэродрома с постепенным изменением конфигурации летательного аппарата из полётной в посадочную. Например, конфигурацию самолёта при заходе на посадку начинают изменять с выпуска шасси, затем выпускают предкрылки и в последнюю очередь, иногда постепенно, выпускают закрылки, при этом скорость самолёта снижается до посадочной. Завершение выпуска закрылков может производиться на глиссаде. Заход на посадку начинается на высоте не менее 400 метров. Скорость захода на посадку должна превышать скорость сваливания при данной конфигурации летательного аппарата не менее чем на 30 %. В аварийной ситуации скорость захода на посадку может превышать скорость сваливания на 25 %. Заход на посадку завершается либо посадкой, либо уходом на второй круг. На второй круг летательный аппарат уходит при превышении допустимых отклонений параметров траектории при снижении на глиссаде от номинальных. Решение о посадке пилот обязан принять не ниже высоты принятия решения.

Воздушная часть посадки длится порядка 6 — 10 секунд и включает:

  • Выравнивание — часть посадки, во время которой вертикальная скорость снижения на глиссаде практически уменьшается до нуля; начинается на высоте 8 — 10 метров и завершается переходом к выдерживанию на высоте 0,5 — 1 метр.
  • Выдерживание — часть посадки, во время которой продолжается дальнейшее плавное снижение аппарата с одновременным уменьшением скорости и увеличением угла атаки до значений, при которых возможно приземление и пробег.
  • Парашютирование — часть посадки, которая начинается при уменьшении подъёмной силы крыла и характеризуется ростом вертикальной скорости; однако из-за малой высоты выдерживания при контакте летательного аппарата с землёй вертикальная скорость незначительна.
  • Приземление — контакт летательного аппарата с земной поверхностью; самолёты с носовой стойкой осуществляют приземление на основные стойки, с хвостовой — на все стойки шасси одновременно (приземление на три точки); приземление на стойки, расположенные впереди центра масс, может привести к повторному отделению самолёта от ВПП — «козлению».

Схема посадки самолёта.

Иногда для уменьшения посадочной дистанции посадку осуществляют без выдерживания, а в отдельных случаях и без полного выравнивания.

В условиях ограниченной длины ВПП посадка осуществляется при помощи специальных приспособлений. Например, при посадке истребителей на авианосец применяются аэрофинишёры — тормозные тросы, натянутые на палубе, за которые истребитель цепляется специальным крюком, и которые гасят кинетическую энергию приземлившегося самолёта. Примечательно, что в момент касания пилот включает взлётный режим на случай неудачного зацепления крюком аэрофинишёра. На наземных аэродромах с целью уменьшения пробега на некоторых самолётах применяется тормозной парашют.

Посадка автожира

Посадка автожира, как и его полёт, производится в режиме авторотации несущего винта. Перед касанием выполняется гашение горизонтальной скорости взятием ручки управления на себя (увеличение тангажа). Посадочная скорость типичного лёгкого автожира (при отсутствии ветра) лежит в диапазоне 25—45 км/ч (ориентировочно). По причине столь малой скорости посадки посадочный пробег автожира крайне короткий, и может составлять единицы метров; при наличии встречного ветра умеренной силы посадка может быть и вертикальной.

Посадка вертолёта

Все вертолёты могут выполнять как вертикальную посадку, так и (при необходимости) посадку с пробегом (по-самолётному). Последний случай относится главным образом к вертолётам с колёсным шасси. Вертолёты с полозковым шасси, хотя и могут (в принципе) выполнять посадку с некоторой горизонтальной скоростью, мало приспособлены к этому и используют такую технику посадки редко (а именно — в случаях недостаточной мощности двигателя для выполнения висения, при ряде отказов и т. д.). Посадка в этом случае выполняется с минимальной возможной поступательной скоростью.

См. также

  • Вынужденная посадка (посадка воздушного судна по причинам, не позволяющим выполнить полёт согласно плану)
  • Посадка на воду
  • Взлёт
  • Посадка с боковым ветром
  • Авторотация
  • Авиация: Энциклопедия / Гл. ред. Г. П. Свищёв. — М.: Большая Российская энциклопедия, 1994. — 736 с. — ISBN 5-85270-086-X.
  • В. В. Ершов — «Раздумья ездового пса»

Это заготовка статьи об авиации. Вы можете помочь проекту, дополнив её.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *